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Abstract

This paper describes a new algorithm that improves the performance of
application-controlled demand paging for the out-of-core visualization of data sets
that are on either local disks or disks on remote servers. The performance im-
provements come from better overlapping the computation with the page reading
process, and by performing multiple page reads in parallel. The new algorithm can
be applied to many different visualization algorithms since application-controlled
demand paging is not specific to any visualization algorithm. The paper includes
measurements that show that the new multithreaded paging algorithm decreases
the time needed to compute visualizations by one third when using one processor
and reading data from local disk. The time needed when using one processor and
reading data from remote disk decreased by up to 60%. Visualization runs using
data from remote disk ran about as fast as ones using data from local disk because
the remote runs were able to make use of the remote server’s high performance
disk array.
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1 Introduction

Simulations run on large parallel systems produce large data sets
having hundreds of megabytes to terabytes of data. The researchers
producing these data sets prefer to visualize them using their per-
sonal workstations. High-end PC workstations currently have the
compute and graphics power to perform these visualizations. How-
ever, these workstations do not have sufficient memory to com-
pletely load large data sets, which means that out-of-core visual-
ization techniques must be used. These techniques calculate the
visualization with only a fraction of the data set resident in mem-
ory. In addition, many data sets are so large that they can only fit on
central file servers. Since most file servers do not have significant
extra CPU and memory capacity, remote out-of-core visualization
is required. The availability of reasonably-priced Gigabit Ethernet
equipment means that network bandwidth is not an issue for remote
out-of-core visualization over local area networks.

One method for performing out-of-core visualization is
application-controlled demand paging [1]. This is similar to the
demand paging used in virtual memory systems, but it is built into
the application instead of the operating system. Demand paging
takes advantage of the fact that many visualization calculations only
touch a small fraction of the data set. For example, streamline cal-
culations only use the data surrounding the streamlines.

The demand paging algorithm divides the data set into fixed-
size blocks, or pages. When a data value is requested, the paging
system loads the page if it is not resident, and the page is cached in
a memory pool. This means that, if the portion of the data set that is
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currently needed (the working set) is smaller than the memory pool
and also has been loaded into memory, the performance is nearly
the same as if the entire data set has been loaded into memory. A
user examining one region of a data set will often be able to load
the working set into memory and take advantage of this improved
performance.

A locally-written interactive visualization tool has successfully
used demand paging to allow interactive visualization of 5 to 10 GB
data sets on systems with 500 MB to 1 GB of memory. Data sets on
remote systems can be visualized interactively using the Network
File System (NFS) to retrieve data pages.

However, the original implementation of out-of-core visualiza-
tion using demand paging did not try to perform computation and
disk access at the same time. While the operating system’s disk
caching and read ahead did overlap disk access and computation,
the amount of overlap was small. In addition, the original imple-
mentation only had one disk request outstanding at a time. This
meant that the operating system could not optimize use of the disk
by reordering the requests to reduce seek time, or by issuing concur-
rent requests to different drives in RAID disk subsystems. Finally,
overlapping computation and disk access is even more important
when the disk is accessed across the network since the network adds
latency.

This paper increases the amount of overlap of computation and
disk accesses by dividing the visualization into a number of tasks,
and then running the tasks using a pool of worker threads. A sched-
uler initially runs one thread per processor. When a thread needs to
read data from disk, it is blocked, and the scheduler allows another
thread to run. The blocked thread is restarted after the data has been
read and a processor becomes available. A separate pool of reader
threads request data pages from the operating system and wait for
the requests to complete. If the data set is on local disk, the reader
threads run as part of the application; if the data set is on a remote
server, the threads run on that server.

This new multithreaded demand paging algorithm has several
advantages other than its increased performance. First, a visual-
ization algorithm must only be parallelized for it to take advantage
of the overlapped disk access and computation. This modification
is useful in itself, and may have already been performed. This is
an advantage over out-of-core techniques that require the visualiza-
tion algorithm to be modified for that specific technique [2, 3, 4].
A second advantage is that demand-paging techniques are not tied
to a particular visualization algorithm; instead, they can be used
to accelerate a number of visualization algorithms. Data structures
proposed to enable out-of-core visualization of specific visualiza-
tion techniques [2, 3, 4]. could be adapted to use demand paging
and also be accelerated using the techniques described in this paper.

The new algorithm was designed so that it is compatible with
time-critical visualization [5], which is where the time to compute
a visualization is limited to guarantee a specified frame rate. With
time-critical visualization, each visualization object stops its com-
putation after its time budget has been exceeded. To do this, each
object must have a fairly accurate estimate of the CPU time used.
Some operating systems, such as Unix, record the amount of CPU



time that a thread uses, but the granularity of the CPU time is too
coarse for interactive visualization applications. Instead, because
the algorithm only schedules one thread per processor, and because
most systems have a high-resolution real time clock, the amount
of elapsed wall-clock time should be an acceptable estimate of the
elapsed CPU time. We hope to extend our out-of-core visualization
implementation to support time-critical visualization in the future.

2 Related Work

In addition to demand paging algorithms, out-of-core visualization
algorithms include streaming algorithms and indexing algorithms.
Streaming algorithms read the entire data set by reading it in pieces
that are small enough to fit into memory. Once one piece has been
brought into memory, the computation is run over that portion of
the data. Further pieces are read and processed until the visual-
ization has been computed for the entire data set. Law et al. [6]
describes a general architecture that streams data through arbitrary
visualization pipelines. The UFAT batch visualization program [7]
also performs streaming on time varying data sets. When the visu-
alization only accesses a small fraction of the data set, streaming
algorithms that do not avoid reading all of the data can be slower
than a demand paging algorithm.

The second type of out-of-core visualization algorithms is index-
ing algorithms. Many indexing algorithms have been described for
isosurface computation [3, 4, 8, 9, 10]. These algorithms precom-
pute an index that identifies the portion of the data that is necessary
to compute the requested visualization. For isosurface computation,
the index identifies which cells contain portions of the isosurface.
One disadvantage of many index algorithms is that their index is
specific to the visualization algorithm.

Some non-visualization out-of-core algorithms have similari-
ties to this work. Flight simulation [11] and walk-through algo-
rithms [12] store their geometry on disk, and only keep the geome-
try which is inside the viewing frustum resident in memory. These
algorithms can hide the disk latency by prefetching the geometry
that will soon move inside the viewing frustum. The prefetching is
possible because the viewer’s expected position can be computed
by extrapolating the user’s position from the last few viewing po-
sitions. These algorithms cannot be used for computing visualiza-
tions because there is no concept of a viewing frustum during the
visualization computation [13].

3 Application-Controlled Demand Paging

The basic idea of demand paging for visualization starts with log-
ically breaking the data set into fixed size pages. When a file is
opened, only enough header information is read to set up the data
structures which track the pages that have been loaded into mem-
ory. When a data value is needed during a visualization computa-
tion, the associated page number is first computed. If the page is
in memory, the requested value is returned. Otherwise, memory is
allocated for the page, the page is read, and the requested value re-
turned. Because the implementation uses a fixed-size memory pool
for page storage, allocating a page when the pool is full involves
reallocating, or stealing, the memory used by another page.

The technique used for dividing the data set into pages impacts
the performance. This paper’s implementation uses a cubed page
format for paging structured grid files (unstructured grids are not
currently supported). The original 3D arrays of data are broken into
a series of pages, each page containing an 8x8x8 cube, or 2 KB, of
the original data. Using a cube of data instead of the original array
order reduces the number of pages that must be read because, if
the original data was simply broken into pages without changing
the layout, each page would contain a plane or slab of data. For

most directions of traversal, a larger fraction of the data in a page
is used when traversing a cube of data instead of a plane of data.
Experiments show that using cubes instead of planes of data reduces
the amount of data that must be read by about half. The page size
should be the best compromise between having large pages, which
decreases the cost of reading each byte, and smaller pages, which
retrieve a smaller amount of unnecessary data. The 8x8x8 page size
had the best performance in experiments described in the earlier
demand paging paper [1].

The cubed page format requires that files be converted to a new
file format before the visualization process. For the three data sets
described in Section 6, their converted files would require an addi-
tional 19 to 30% of storage if partially-filled pages were padded to
the full page size when written to disk. Because 19% of a large file
is still large, partially filled pages are not padded on disk. These
pages are expanded to full size when they are loaded into memory
to allow the run-time data access code to be simpler and faster.

When a new page must be read when the memory pool is full,
an existing memory block must be stolen. The paging module al-
locates a block that has not been used recently by associating a
referenced bit with every page in memory. The referenced bit is set
when a page is referenced. When a page must be stolen, the in-
memory pages are scanned to locate one with a cleared referenced
bit. The referenced bit of a page is cleared as it is examined dur-
ing the scanning, which means that a page is reallocated if it has
not been accessed after two scanning passes have completed. This
algorithm was adapted from similar ones used for virtual memory
page replacement in operating systems [14].

3.1 Field Encapsulation Library

The paging system is part of the Field Encapsulation Library [15].
This library encapsulates the management of field data for different
grids, such as regular, structured curvilinear, multiblock, and un-
structured grids. It provides a grid-independent interface by plac-
ing all the grids types in a C++ class hierarchy and using poly-
morphism to direct requests to the correct functions at run time.
Because paged grids and fields are also defined in this class hierar-
chy, visualization algorithms do not need to be modified to perform
out-of-core visualization. Instead, they simply access data as if the
entire data set was loaded into memory, and the demand paging
system loads data as required.

FEL retrieves data from the paging system either vertex at a time
or a 2x2x2 group of vertices at a time. Each request can be for all or
part of the data (coordinates, solution data) stored at the vertex or
cell vertices. Being able to retrieve multiple values with one func-
tion call reduces the cost of translating the i, j, k lattice coordinates
to page number and offset. One consequence of this interface is
that a single retrieval request can cause a number of pages to be
read if multiple values are requested or a 2x2x2 request falls on a
page boundary.

4 Multi-Threaded Demand Paging

The multi-threaded demand paging algorithm halts a computation
when it requires a page that is not resident and attempts to run an-
other computation while the page is being read. This is done by
using a simple, high-level multitasking library called the Abstract
Multitasking Library (AML).

An application uses AML to compute a visualization by creating
a number of tasks. Typically, each task represents a complete or
partial visualization object, such as a single streamline or a single
grid surface. Each task is a C++ object that holds enough informa-
tion to identify the work to be done, and has a method that is called
to do the computation. For example, the task object might hold
pointers to a streamline’s seed point and the velocity field within
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which the point will be integrated, and define a function that calls
an existing streamline integration function.

Once the application creates the tasks, it places them in an AML
task group, which is a simple list of tasks. Then, the application
uses AML to initialize a pool of worker threads, and tells AML to
use the pool to compute the visualizations in the task group. At
the start of the computation, AML first assigns a task from the task
groups to each thread, and starts the threads running. One thread is
started for each processor that will be used. Each thread then works
independently on its assigned task until it finishes the task or finds
that the it needs a page of data that is not memory resident. If a
thread finishes the task, it uses AML to find another task in the task
group to compute. If a thread needs a page of data, it requests that
the page be read by a reader thread; this process is described below.

After placing the read request in the queue, the thread sees if
another thread is waiting to get use of a processor. If so, the first
thread wakes up the other thread before going to sleep. Otherwise,
if there is no waiting thread, the first thread will check to see if there
are remaining tasks in the task group as well as an idle thread in the
thread pool. If the checks succeed, the first thread wakes up the idle
thread before going to sleep. The previously idle thread then starts
work on the next task in the task group.

The algorithm just described is a thread scheduler; it is similar
to the ones built into operating systems. The scheduler attempts
to keep one thread running on each processor by only having one
thread per processor in a runnable state; that is, one thread that
is not blocked. This means that a thread is not always immedi-
ately restarted after a page is read for it. The thread is immediately
restarted if the scheduler sees that there are fewer running threads
than processors. However, if every processor has a thread to run,
the now-ready-to-run thread is placed in a queue to wait until a pro-
cessor becomes available.

The scheduler does not use any special operating system func-
tions to manage its pool of worker threads. Instead, it uses standard
interprocess communication mechanisms such as condition vari-
ables. If a thread is to be blocked, it waits on a condition variable,
which causes it to stop execution. The scheduling mechanism does
assume that, if only one thread per processor is not blocked, the
operating system is smart enough to run each of the threads on a
separate processor. Our experience is that this works reasonably
well on Irix systems if the sproc threading library is used. The
pthreads multitasking library gives lower performance. A possible
explanation for the low performance is that, if the pthreads package
does its own thread scheduling outside the kernel (as is typical),
the pthreads scheduler interacts unfavorably with the AML sched-
uler. However, we have not yet fully explored all of the pthreads
scheduling options.

4.1 Parallelizing Demand Paging

The parallel paging algorithm has a few differences from the se-
rial paging algorithm described above. The changes fall in three
categories:

Page access. Each access to a page to retrieve data must be
done atomically. Otherwise, one thread could verify that a page
was present, a second thread could steal that page’s storage and
read a new page into it, and then the first thread could retrieve the
new page’s data by mistake. The problem is eliminated by serial-
izing access to the page with a mutual exclusion lock. However,
allocating one lock per page in the file is impractical since there
may be tens or hundreds of millions of pages mapped at once, and
sproc locks use about 150 bytes each. Instead, the implementa-
tion uses one lock for a group of 48 to 80 pages, depending on the
type of file. Limited experiments indicate that the number of pages
per lock is not a critical parameter: doubling the number of pages
per lock lowers the performance by about 3%.

Reading a page. When a thread finds that a page is not present,
it finds memory for the page, and then, instead of reading the page
from disk, it puts a request for the page to be read into a queue. If
the thread needs more than one page, it allocates memory and puts
a request into the read queue for each page. Then, the thread waits
for the reads to be completed.

A separate pool of reader threads takes requests from the read
queue, reads the page, and unpacks the page if necessary. When a
reader thread finishes a read, it checks whether all of the worker’s
requests have been completed. If so, the worker thread is restarted if
the scheduler indicates that a processor is available, and the thread
is marked as ”ready to run” otherwise.

Corner cases. The page allocation code needs to be modified
to insure that only one thread allocates a page at a time using both
a lock for scanning the page table and the per-page-group locks.
Also, the page reading code must handle having more than one
worker request the page at the same time. This is handled by keep-
ing a list of pages that are being read, and checking the list before
adding a request to the read queue.

4.2 Remote Demand Paging

Remote demand paging could be performed using a distributed file
system, such as the Network File System (NFS). However, NFS
provides lower performance than a specialized paging server, as
shown below. One reason for the lower performance of NFS is that
it only sends blocks that are aligned on regular block boundaries.
Because paged files have arbitrarily sized pages, the protocol will
return more data than is necessary. In addition, some NFS imple-
mentations may require more context switches and copying of data
compared to what can be achieved with a specialized client and
server.

The remote paging server is a simple application that communi-
cates with the local paging library using a TCP socket. The server
supports three primary operations: Open, which opens a file and
returns a file handle; Read, which reads and returns data given a file
handle, an offset, and size; and Close, which closes the file specified
by a file handle. The server does not support writing.

When a worker thread discovers that a page from a remote paged
file is not memory resident, it puts the request in the read queue, and
also sends a read request to the remote server. The remote server
application has a pool of reader threads that constantly take incom-
ing read requests from the socket, perform the reads, and return the
requested data via the socket. The reader threads serialize read-
ing and writing to and from the socket using a pair of semaphores.
A single local reader thread waits for results coming from the re-
mote server, and matches the returned data to a request in the read
queue. Then, the thread reads the data from the socket and unpacks
the page if necessary. The final step is to wake up the requesting
worker thread if a processor is available. Because the responses can
come back in any order, each request and response has a sequence
number identifying it.

To allow reasonable performance, the TCP socket must have the
TCP NODELAY option enabled. If the option is not enabled, the
performance on Irix systems is much lower. This happens because
the TCP protocol code will hold on to a read request message for
a while due to a desire to combine multiple small messages into a
single large one.

5 Implementation

The local and remote demand paging algorithms just described have
been implemented in both interactive and batch visualization appli-
cations. While most users will use the interactive application, the
timing runs described below used a batch visualization application
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Figure 1: F18 timings using data from local disk and one processor.
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Figure 2: F18 timings using data from local disk and four proces-
sors.

called batchvis. We used the batch application because it al-
lowed performance data to be recorded for the same visualization
under a number of different conditions. However, because the data
set is traversed only once, this is a worst-case scenario for out-of-
core visualization using demand paging: there is no chance for the
data set’s working set to be entirely loaded into the cache of data
pages.

The batchvis application uses FEL and the VisTech [16] visu-
alization library. This application allows the user to compute a set
of visualizations for each time step in the visualization. The pro-
gram currently supports particle tracing (streamlines, streaklines,
and pathlines) as well as the extraction of surfaces of the grid. Ad-
ditional visualization methods will be supported in the future. The
visualizations can be optionally colored by using one of several
standard functions of the field.

A non-threaded version of FEL and batchvis can be created
using compile time flags that replace the threaded portions of the
code with the older non-threaded versions. The serial version of the
remote paging code is similar to the parallel version, but only allows
synchronous requests to the server. The experiments described be-
low give timings with this version to show the improvements due to
the new algorithms. The threaded version of batchvis uses SGI
sproc-style threads instead of the pthreads package because the
former gives better performance.

Because the current remote paging server is a prototype, it does
not implement security. We expect that adding security would not
be difficult since the server only uses a single TCP/IP socket for
communication.
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Figure 3: F18 timings using data from remote disk and one proces-
sor.
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Figure 4: F18 timings using data from remote disk and four proces-
sors.

6 Experimental Methodology

We evaluated the multi-threaded demand paging algorithm’s perfor-
mance by measuring the time required to compute a visualization
for several different configurations. The performance was measured
for different data sets, different locations of the data (local or re-
mote), and for different algorithm parameters.

The experiments were run on older systems that have approxi-
mately the same performance that can be achieved with a modern
fully configured high-end PC system. The visualizations were com-
puted on an SGI Onyx with 4 196 Mhz R10000 processors and 1
GB of memory. Local data resided on a 4-disk striped disk array.
These disks are fairly old, which means that their performance is
low: 12.5 MB/sec for large, sequential reads using direct I/O. Re-
mote data was served by an SGI Onyx with 8 196 Mhz R10000
processors and 5 GB of memory. The remote data was stored on a
older RAID disk array that has a peak sequential performance of 25
MB/sec. This large system was used as a file server because it was
the only system with sufficient disk space that could be dedicated
to running performance experiments.

The remote server’s large memory and processor configurations
were largely unused during the runs since very little processing was
necessary, and because all of the machines had their operating sys-
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Number Grid Solution Total Amount
Data of Time Size Size Size Read
Set Steps (MB) (MB) (GB) (MB)
SSLV 1 254.6 318.3 0.56 45.8
F18 150 27.0 33.7 4.97 99.6
Harrier 1600 55.1 68.9 107.7 8745

Table 1: Data set statistics. The sizes include both the data and file
headers.

tem’s file cache flushed before each run. The cache was flushed
by running a program that allocated as much memory as possible,
which takes memory away from the file cache, and then reading a
different, large file in random order. In addition, multiple copies of
the SSLV and F18 data sets were placed on the remote server. Con-
secutive runs rotated through the data set copies. All of the runs
used a 200 MB memory pool to hold data pages.

The two systems were connected by an 800 Mbit/sec HIPPI TCP
network. While HIPPI networks are fairly exotic, the performance
should be similar on the more common Gigabit Ethernet since the
remote protocol does not use HIPPI’s large packet capability. The
price of Gigabit Ethernet has decreased to the point where it can be
deployed to individual researcher’s workstations.

We used the three data sets shown in Figures 8 to 10 for the
performance timings. Table 1 contains statistics about the data sets.
The data sets are:

SSLV. This data set is the Space Shuttle Launch Vehicle flying at
Mach 1.25. This steady simulation was computed in order to have
a more accurate simulation of the shuttle aerodynamics compared
to earlier simulations, and enabled more accurate engineering anal-
yses. The visualization contains several streamlines showing the
airflow between the external tank, the solid rocket booster, and the
orbiter. The streamlines are colored by the local density value.

F18. The F18 data set shows the F18 flying at a 30-degree angle
of attack. The simulation was performed to analyze the interaction
of the vortex formed over the leading-edge extension with the ver-
tical stabilizer. The visualization injects particles into the center of
the vortex, and colors them according to the local density value.

Harrier. The Harrier data set shows the Harrier flying slowly 30
feet above the ground. The simulation is part of research into the
cause of oscillations seen when the jet is flying at this level. The
visualization shows particles injected into the jet exhausts, which
shows the structure of the ground vortices created by the exhaust.
The particles were injected every third time step to reduce the com-
putation requirements, and are colored according to the local pres-
sure. Because the workstation used for the local runs did not have
sufficient disk space to hold the Harrier, only runs using remote data
access are shown below. Also, because the visualization takes over
an hour to compute, fewer performance runs were measured with
the Harrier.

Different sets of runs explored the following variables:
Data set access. Runs accessing a local copy of the data show

the performance of the local demand paging algorithm. Different
runs compared the performance of accessing remote data using the
custom paging protocol and the standard NFS protocol.

Number of processors. Some runs show the basic performance
of the algorithms, when they are run on a single processor. Other
runs used all four of the system’s processors, which shows the
amount of speedup possible. It would be unreasonable to expect
linear speedups because the disk and network performance did not
change. The single processor runs used the Irix runon command
to restrict all threads to a single processor.

Number of reader and worker threads. Different runs show
how the amount of computation and disk access concurrency affects
performance.
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Figure 5: SSLV timings summary. The 1- and 4-CPU values are for
16 reader threads and 8 worker threads per processor.
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Figure 6: F18 timings summary. The 1- and 4-CPU values are for
16 reader threads and 8 worker threads per processor.
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Figure 7: Harrier timings summary. The 1- and 4-CPU values are
for 16 reader threads and 8 worker threads per processor.

7 Results

The detailed results are shown in Tables 2 to 4. All of the tim-
ings are from single run, which means run-to-run variations are ex-
pected.

Figures 1 to 4 show the general performance trends with the F18
when the number of reader and worker threads are varied.

The general trends for the other two data sets are similar. These
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1 Processor 4 Processors
Data Serial Num. Number of Reader Threads Num. Number of Reader Threads
Access WT 1 4 8 16 24 WT 1 4 8 16 24

1 33.8 34.2 34.4 34.2 34.6 4 33.3 25.5 21.8 21.1 20.9
Local 30.1 4 34.5 26.6 22.7 21.5 21.6 16 35.0 25.8 21.9 19.5 18.7

8 34.9 26.3 22.5 20.1 19.7 32 35.2 25.6 21.6 19.8 18.8
Remote 1 68.7 72.3 68.6 60.3 73.1 4 63.8 63.3 58.3 66.1 64.9
via 55.0 4 59.5 69.3 66.4 64.8 67.8 16 69.7 58.5 71.5 63.2 61.6
NFS 8 72.9 65.0 61.5 56.8 67.4 32 71.4 68.8 71.5 66.6 55.2
Remote 1 41.6 43.2 43.4 43.6 45.9 4 44.5 35.3 30.7 29.2 29.6
via 56.7 4 41.1 32.3 27.1 25.2 25.4 16 42.8 33.7 29.0 26.5 25.1
Server 8 35.4 27.4 23.3 21.2 20.9 32 42.8 34.1 29.2 26.8 26.3

Table 2: SSLV timings, in seconds. Key: WT = worker threads.

1 Processor 4 Processors
Data Serial Num. Number of Reader Threads Num. Number of Reader Threads
Access WT 1 4 8 16 24 WT 1 4 8 16 24

1 165 163 159 161 161 4 127 119 93.2 87.8 87.2
Local 146 4 138 131 107 99.6 100 16 125 113 86.8 75.4 74.8

8 133 123 101 94.4 95.0 32 125 113 86.4 76.0 75.2
Remote 1 240 223 224 225 226 4 168 168 168 165 164
via 217 4 201 200 195 193 192 16 177 177 173 169 169
NFS 8 197 195 188 209 184 32 178 178 175 171 170
Remote 1 172 175 171 168 171 4 114 106 86.6 83.7 85.2
via 187 4 128 119 102 97.2 96.9 16 104 95.7 76.5 77.1 68.7
Server 8 120 114 96.8 91.8 91.4 32 109 99.3 78.8 71.8 69.8

Table 3: F18 timings, in seconds. Key: WT = worker threads.

1 Processor 4 Processors
Data Serial Num. Num. Reader Threads Num. Num. Reader Threads
Access WT 1 8 16 WT 1 8 16
Remote 1 264 267 275 4 174 181 170
via 225 4 231 234 226 16 165 171 159
NFS 8 219 223 207 32 166 173 159
Remote 1 225 233 229 4 123 116 90.7
via 227 4 187 181 150 16 108 103 78.5
Server 8 173 167 146 32 109 105 77.4

Table 4: Harrier timings, in minutes. Key: WT = worker threads.

charts have curves for constant numbers of worker threads per pro-
cessor. This means that the curves in the 1-processor charts are for
1, 4, or 8 worker threads, and the curves in the 4-processor charts
are for 4, 16, or 32 worker threads.

Increasing the number of worker or reader threads generally in-
creases the performance when the data set is on local disk or ac-
cessed via the custom server. This result shows that increasing the
amount of concurrency that is available to the new multithreaded
paging library increases the performance up to a point. However,
when remote data are accessed using NFS, increasing the number
of reader threads does not increase performance. Increasing the
number of worker threads appears to slightly increase performance.

The charts show that 8 worker threads per processor is only
slightly faster than using 4 worker threads. Increasing the num-
ber of worker threads further is unlikely to increase performance.
Using 24 reader threads instead of 16 reader threads does not al-
ways increase the performance (see Tables 2 to 4). Overall, the
best algorithm parameters are 8 worker threads per processor and
16 reader threads. These parameters give good performance and
minimize the total number of threads. Since a real implementation
would have to use fixed parameters, the following discussions will
only consider timings with these parameters.

Figures 5 to 7 have timings with these parameters that allow the
different algorithms to be compared. The comparison results fall
into three categories:

Local data performance. The new threading library substan-
tially decreased the execution time when the data set resides on lo-
cal disk. If only one processor is used, the time taken is a third less
than the time needed by the serial implementation. The run time
decreases when four processors are used with the F18 to nearly half
the serial time. This shows that these multithreading techniques
will make good use of multiprocessor systems if there is sufficient
disk bandwidth. The time does not decrease with the SSLV because
that visualization only requires 3 CPU-seconds of computation—
the bulk of the time is spent waiting for data.

Remote data performance. The runs that accessed remote data
using the demand paging server were substantially faster than any
of the serial runs with the demand paging server or any of the runs
that retrieved data using NFS. When one CPU was used, the paging
server runs took between 35% (for the Harrier) and 60% (for the
SSLV) less time than the fastest 1-CPU NFS or serial runs. Runs
using the demand paging server and 4 CPUs were even faster with
the Harrier and F18. The 4-CPU SSLV run was slightly slower
since there was no need for the additional processors, and using
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additional processors has increased overhead.

Remote data versus local data. One surprising result with the
remote timings is that the remote runs using the demand paging
server were about as fast as the corresponding local data runs. This
can be explained by the higher performance disk subsystem on the
remote server: it has a RAID array with multiple disk drives, while
the local disk subsystem has only four striped disks. This speedup
will likely be seen in production usage of threaded demand paging
because central file servers usually have a better storage system than
a personal workstation.

8 Summary and Future Work

This paper has described an approach that improves the perfor-
mance of application-controlled demand paging for out-of-core vi-
sualization by better overlapping the computation with the page
reading process. It does this by using a pool of worker threads
that perform the visualization computation, and a separate pool of
reader threads to perform the page reads. A scheduling module
manages the worker threads so that only one worker runs per pro-
cessor. Measurements show that the multithreaded paging algo-
rithm decreases the time needed to compute visualizations by one
third when using one processor and reading data from local disk.
The time needed when using one processor and reading data from
remote disk decreased by between 35% and 60%, in part due to the
high performance of the remote server’s disks. Finally, the new re-
mote paging algorithm was substantially faster than using NFS for
remote paging.

The performance increases described in this paper make out-of-
core visualization using local and remote demand paging more at-
tractive. The increased speed will allow researchers to visualize
even larger data sets using the workstations on their desk instead of
having to go down the hall to a large shared visualization system.
Furthermore, the increased performance of remote demand paging
will allow researchers to more quickly visualize data sets on their
personal workstations that are too large to be stored on their work-
station’s disk.

One direction of future work would be run experiments using
100 Mbit/sec Fast Ethernet instead of HIPPI. The runs shown here
read data at an average rate that could be handled with Fast Eth-
ernet, at most 2.2 MB/sec. However, the peak rate is undoubtedly
higher. A second direction would be to implement an interactive
time-critical visualization system in order to gauge the effective-
ness of the time-critical support built into the new multithreaded
paging algorithm. A third direction would be to evaluate the perfor-
mance of remote demand paging over a wide area network instead
of over a local area network. Finally, over the next few weeks re-
searchers in our division will be exploring the limits of out-of-core
remote visualization by using these new techniques to visualize a
one terabyte data set on personal workstations.
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Figure 8: Visualization of the Harrier data set.
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Figure 9: Visualization of the SSLV data set.

Figure 10: Visualization of the F18 data set.
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